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Abstract. The problem of motion of a rigid body with a spherical dynamical symmetry about
a fixed point under the action of a combination of nonsymmetric nonuniform electric, magnetic,
gravitational and Lorentz forces is considered. Two systems of equations of motion written in
the body system and in the inertial system are shown to have the same structure. Transforming
some recently found integrable cases of a nonsymmetric body in an axial combination of fields,
we construct two new integrable cases of a body in a nonsymmetric combination of fields. In the
latter cases, the body is assumed to have distributions of electric charges, mass and magnetization
which exhibit a common axis of symmetry and carries a rotor along that axis. Explicit solution
of the equations of motion is discussed.

1. Introduction

The problem of motion of a rigid body about a fixed point under the action of conservative
potential and gyroscopic forces was treated in great detail only in the case when these forces
admit a common axis of symmetry passing through the fixed point. In this general setting of
the problem, seven general integrable cases are known at present [1]. Those cases include
and generalize all the integrable cases previously known in various restricted versions of
this problem, such as the three well known cases due to Euler, Lagrange and Kovalevskaya
of the heavy body in a uniform field [14, 15], and the six cases of a body in a liquid [18].
In addition to general integrable cases, a large number of conditional integrable cases and
particular solutions was found in several special versions of the problem [14, 15, 17, 16].

In mechanics, the knowledge of a sufficient number of integrals of motion usually
guarantees integrability either in the sense of Jacobi or in the sense of Liouville. However,
the procedures suggested to reduce the complete explicit solution to quadratures are rarely
effective. In the majority of cases we need to look for a suitable approach to the solution
of each integrable problem. This has only been achieved for a few of the known cases (see
e.g. [8–13]). For an account of solved and unsolved cases see [16].

Despite its practical importance, the problem of motion under the action of
nonsymmetric forces has escaped attention for a long time. Despite the richness in its
structure, integrable cases of this problem are sill rare. The first one was found in [19]
(see also [21]). A few more cases were introduced in [22, 3, 4, 23, 5, 6]. The case presented
in [5] is the only one that involves, in addition to potential forces, not only a gyrostatic
moment fixed in the body, but also gyroscopic moments depending on the orientation of the
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body. A physical interpretation of such moments is possible as a result of the Lorentz effect
on a permanent distribution of charges carried by the moving body [2, 5]. An alternative
explanation of those moments pointed out in [2] assumes the presence of (nonisotropic)
dielectric parts of the body under the joint action of electric and magnetic fields.

In this paper we study the general problem of motion of a rigid body of complete
dynamical symmetry about a fixed point under the action of a system of potential and
gyroscopic forces admitting no axial symmetry. Generally speaking, this problem can be
modelled by the motion of an electrified, magnetized gyrostat under the action of a skew
combination of Newtonian, Coulomb, magnetic and Lorentz forces.

Our main objective is to establish certain equivalence between versions of this problem
and the well-studied case of axisymmetric forces. This equivalence reveals two new
integrable cases of our problem and certain connection between other cases known before.
In addition, it furnishes a simple way for certain analytical and qualitative studies of the
motion and usually enables complete solution of the new problem just by transforming a
known solution. In both new cases, as in the case of [5], the Lorentz forces play an essential
role.

We first introduce the following notation: letα,β,γ be the unit vectors along the axes
of the inertial system Oξηζ and i, j,k be the unit vectors along the axes of the system
Oxyz, fixed in the body. The relative position of the two systems will be specified by the
Eulerian angles:ψ is the angle of precession around theζ -axis, θ is the angle of nutation
betweenz andζ , andϕ is the angle of rotation of the body around thez-axis.

Throughout this paper we shall use the following notation. A vectoru = (u1, u2, u3)

will always be referred to the body system, while the same vector referred to the space
system will be denoted by

ū = (ū1, ū2, ū3) = (u ·α,u · β,u · γ). (1)

For example, we have

ī = (α1, β1, γ1) j̄ = (α2, β2, γ2) k̄ = (α3, β3, γ3).

Let the body be in motion under the action of generalized conservative forces whose
generalized (velocity-dependent) potential can be written in the formV − l · ω. Here
V = V (α,β,γ), l = l(α,β,γ) are certain functions ofψ, θ, ϕ through the nine direction
cosinesα1, . . . , γ3 that characterize potential and gyroscopic (zero-potential) forces. This
system is characterized by the Lagrangian

L = 1
2Aω

2+ l · ω − V. (2)

As in [1], the potentialV can be understood as due to certain gravitational, electric and
scalar magnetic interactions. A constant term in the vectorl is a gyrostatic moment, while
the variable terms inl appear as a result of the Lorentz effect of the magnetic field on the
electric charges. It can be expressed in the form

l =m+
∫
r ×A de

whereA is the vector potential of the magnetic field at the point containing the charge
element de and the integral is taken over the charge distribution on the body [2]†.

We shall write the equations of motion in the vector Euler–Poisson form, which has, in
many cases, certain advantages over the Lagrangian form. The equations of motion of the

† Here MKS units are used. In Gaussian units de should be divided by the velocity of lightc. We also assume
that the velocity and acceleration are sufficiently small to neglect both relativistic effects and classical radiation
damping.
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general body in such a situation were derived in [7]. For a dynamically spherical body they
take the form:

Aω̇ + ω × µ = α× ∂V
∂α
+ β × ∂V

∂β
+ γ × ∂V

∂γ

α̇+ ω ×α = 0 β + ω × β = 0 γ̇ + ω × γ = 0
(3)

whereA is the common moment of inertia of the body about an axis through the fixed point
and

µ = l+
(
α× ∂

∂α
+ β × ∂

∂β
+ γ × ∂

∂γ

)
× l. (4)

The vectorµ can be expressed directly in terms of the gyrostatic moment and the
magnetic field

µ =m−
∫
(r ·H)r de. (5)

From the point of view of integrability, it may be simpler, however, to think of
the mechanical system characterized by (3); or, equivalently, by (2) as a conservative
Hamiltonian system of three degrees of freedom, for which only one integral is known,
namely the Jacobi integral

Il = 1
2Aω

2+ V. (6)

Complete integrability in the sense of Liouville requires the knowledge of only two
additional integrals in involution. Although we shall rely on the last concept of integrability,
it will be usually easier to rely on the symmetric vector form of the equations of motion
(3) in constructing the two missing integrals.

2. A transformation of the equations of motion

Now we try to write down the system of equations (3) in an equivalent form referred to
the inertial system Oξηζ . Instead ofω,α,β,γ we shall use as variables̄ω, ī, j̄, k̄. Let v
andµ̄ denote the scalar and vector functions which now depend onī, j̄, k̄. We can use the
same method of [7] or directly project the dynamical Euler equation in (3) withv andL
on the directions of the fixed axesζ, η, ζ . After some manipulations we can write the new
dynamical equation as

A
d

dt
ω̄ + ω̄ × µ̄ = −

(
ī× ∂v

∂ ī
+ j̄ × ∂v

∂ j̄
+ k̄ × ∂v

∂k̄

)
. (7)

Equation (7) should be augmented by the equalities that describe the space rate of change
of the vectors̄i, j̄, k̄. In the final form the system of equations of motion in the inertial
system takes the form

−A d

dt
ω̄ + ω̄ × M̄ = ī× ∂v

∂ ī
+ j̄ × ∂v

∂ j̄
+ k̄ × ∂v

∂k̄

−dī

dt
+ ω̄ × ī = 0 − dj̄

dt
+ ω̄ × j̄ = 0 − dk̄

dt
+ ω̄ × k̄ = 0

(8)

in which M̄ = −µ̄.
Now we easily notice that the systems (8) has the same structure as (3). They can be

made fully identical by the replacement

ω,α,β,γ, V ,µ(or l), t → ω̄, ī, j̄, k̄, v,M̄ (or l̄),−t. (9)
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We can draw the following useful conclusion.
Let us be given an integrable case of (3) with

V = v(α1, α2, α3, β1, β2, β3, γ1, γ2, γ3)

µi = µi(α1, α2, α3, β1, β2, β3, γ1, γ2, γ3) i = 1, 2, 3
(10)

and let the general solution of the equations of motion be

ω = Ω(t)

S ≡
(
α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

)
= R(t). (11)

This case implies the integrability of the system (8) with

v = V (ī1, ī2, ī3, j̄1, j̄2, j̄3, k̄1, k̄2, k̄3)

M̄i = −µi(ī1, ī2, ī3, j̄1, j̄2, j̄3, k̄1, k̄2, k̄3) i = 1, 2, 3
(12)

and also gives its general solution

ω̄ = Ω(−t) (13)(
ī
j̄
k̄

)
= R(−t). (14)

Expressing (12) in the body system we obtain an integrable case of (3) in whichV,µ are
replaced by

v = V (α1, β1, γ1, α2, β2, γ2, α3, β3, γ3)

M = −µ1(α1, β1, γ1, α2, β2, γ2, α3, β3, γ3)α− µ2(α1, β1, γ1, α2, β2, γ2, α3, β3, γ3)β

−µ3(α1, β1, γ1, α2, β2, γ2, α3, β3, γ3)γ.

(15)

Moreover, the general solution of the new case can be written as

ω = Ω(−t)RT (−t)
S = RT (−t). (16)

Apart from certain special cases, the pairs of expressions (10) and (15) characterize
physically different problems. The two problems become mathematically equivalent when
the second is put in the form (12).

3. New integrable cases

In [1] we introduced some integrable cases of the motion of a body under the action of
axisymmetric forces. Of those cases two, the second and third, are valid for a body whose
ellipsoid of inertia is a sphere. We now present the equivalent of those cases in the above
analogy.



New integrable problems of motion of a rigid body 5823

3.1. The first case

For the third case of [1], the equivalent case according to section 2 is characterized by the
expressions

V = s1α3+ s2β3+ s3γ3− 1

2A
(bcα2

3 + caβ2
3 + abγ 2

3 )− 1
2A(n+ n1α3+ n2β3+ n3γ3)

2

+ 1
2(n+ n1α3+ n2β3+ n3γ3)[(b + c)α2

3 + (c + a)β2
3 + (a + b)γ 2

3 ]

µ1 = −[A(n1α1+ n2β1+ n3γ1)+ aα3α1+ bβ3β1+ cγ3γ1]

µ2 = −[A(n1α2+ n2β2+ n3γ2)+ aα3α2+ bβ3β2+ cγ3γ2]

µ3 = A(n+ n1α3+ n2β3+ n3γ3)− (aα2
3 + bβ2

3 + cγ 2
3 ).

(17)

For the sake of clarity and for direct verification of the results we write down the
integrals of the new integrable problem (17). They have the form:

I2 = Ar − 1
2[(b + c)α2

3 + (c + a)β2
3 + (a + b)γ 2

3 ] + A(n+ n1α3+ n2β3+ n3γ3) (18)

I3 = 1
2A{(b + c)[ω ·α+ (n+ n1α3+ n2β3+ n3γ3)α3]2

+(c + a)[ω · β + (n+ n1α3+ n2β3+ n3γ3)β3]2

+(a + b)[ω · γ + (n+ n1α3+ n2β3+ n3γ3)γ3]2}
+(s1− n1I2)[A(ω ·α+ (n+ n1α3+ n2β3+ γ3n3)α3)+ aα3]

+(s2− n2I2)[A(ω · β + (n+ n1α3+ n2β3+ γ3n3)β3)+ bβ3]

+(s3− n3I2)[A(ω · γ + (n+ n1α3+ n2β3+ γ3n3)γ3)+ cγ3]

−abc
{

[ω ·α+ (n+ n1α3+ n2β3+ γ3n3)α3]
α3

a

+[ω · β + (n+ n1α3+ n2β3+ γ3n3)β3]
β3

b

+[ω · γ + (n+ n1α3+ n2β3+ γ3n3)γ3]
γ3

c

}
. (19)

The integralI2 is linear in velocities. It indicates that the angle of proper rotationϕ is
a cyclic variable. The moving body should be symmetric around itsz-axis. The integralI3

is a polynomial of the second degree in velocities with coefficients depending onα,β,γ.

3.1.1. The explicit solution To obtain an explicit solution of the case (17), it suffices to
apply the transformation (16) to the solution (11) of the original case. The latter is known
only in a very special case of motion of a body of liquid, due to Lyapunov [20], and
characterized bys1 = s2 = s3 = n = n1 = n2 = n3 = 0. This case was solved by Kötter in
terms of theta functions of two arguments [9]. According to (16) the solution of (17) for
s1 = s2 = s3 = n = n1 = n2 = n3 = 0 can be expressed in the same class of functions.

3.2. The second case

This is the equivalent of the second case of [1], and it is characterized by

V = 1
2(c1α

2
3 + c2β

2
3 + c3γ

2
3 )− 1

2A(n+ n1α
2
3 + n2β

2
3 + n3γ

2
3 )

2

µ1 = −2A(n1α3α1+ n2β3β1+ n3γ3γ1)

µ2 = −2A(n1α3α2+ n2β3β2+ n3γ3γ2)

µ3 = A(n+ n1α
2
3 + n2β

2
3 + n3γ

2
3 ).

(20)
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This problem admits the integrals:

I2 = A(r + n+ n1α
2
3 + n2β

2
3 + n3γ

2
3 ) (21)

I3 = A((c1− 2n1I2)(ω · α + (n+ n1α
2
3 + n2β

2
3 + n3γ

2
3 )α3)

2

+(c2− 2n2I2)(ω · β + (n+ n1α
2
3 + n2β

2
3 + n3γ

2
3 )β3)

2

+(c3− 2n3I2)(ω · γ + (n+ n1α
2
3 + n2β

2
3 + n3γ

2
3 )γ3)

2)

−(2n2I2− c2)(2n3I2− c3)α
2
3 − (2n3I2− c3)(2n1I2− c1)β

2
3

−(2n1I2− c1)(2n2I2− c2)γ
2
3 . (22)

Note that in (22)I2 stands for its expression (21). In the general case, the integralI3 is
a polynomial of the third degree in the velocities with coefficients depending onα,β,γ.
In the special case, whenn1 : n2 :: n3 :: c1 : c2 : c3, a constant factor can be omitted and
the integral becomes of the second degree. The same happens whenn1 = n2 = n3 = 0.

3.2.1. The explicit solution The original case generalizes by the introduction of the three
parametersn1, n2, n3 the case of motion of a body in liquid known as Clebsch’s case of
complete dynamical symmetry and reduces to that case whenn = n1 = n2 = n3 = 0 [1].
The solution of Clebsch’s case can be expressed in terms of theta functions of two variables
[10] and so will be the solution of the second new case (20) through formulae (16).

4. Conclusion

In this paper we have studied the problem of motion about a fixed point of a rigid body
gyrostat with a spherical inertia tensor under the action of an asymmetric combination of
gravitational, electric, magnetic and Lorentz forces. The main results can be summarized
as follows.

(1) We show that the two systems of equations of motion written in the body system and
in the inertial system have the same structure and are connected by a simple transformation.

(2) We use this situation to construct new integrable problems from different ones that
are known to be integrable. In particular, we generate two new integrable cases of motion in
which the body is axisymmetric and moves in a nonsymmetric combination of fields from
two known cases in which the body is not axisymmetric but moves in an axisymmetric
combination of fields.

(3) We show that certain versions of the new cases can be explicitly solved in terms of
theta functions of two variables by transforming known solutions due to Kötter in a classical
problem of motion of a body in a liquid.
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